Uudet tekoälyratkaisut tarjoavat hämmästyttäviä läpimurtoja ChatGPT:sta sparrailukaverina Midjourneyn ammattikuvittajaan, Sunon radiohittigeneraattorista Googlen NotebookLM:n artikkelipodcasteihin. Monet arviot ovat myös esittäneet, että tekoälyratkaisut johtavat merkittävään tuottavuuslisään ja sitä kautta talouskasvuun.
Goldman Sachs esimerkiksi arvioi, että tekoälyratkaisut voivat kasvattaa bruttokansantuotetta peräti 7% vuodessa. Talouslehti Forbes puolestaan esittää, että tekoäly nostaa USA:n bruttokansantuotetta peräti 21% vuoteen 2030 mennessä. Stanfordin keväällä julkaisema AI Index puolestaan esittää, että tekoälyratkaisut kasvattavat yritysten liikevaihtoa ja vähentävät samalla kuluja.
Myös tekoälyn tuottavuusvaikutukset ovat ilmeiset. Harvardin julkaisemassa paperissa konsultit saivat yli 12 prosentin tuottavuuslisän. Jo mainitun Stanford AI Indexin mukaan puolestaan kokonaistuottavuus voi kasvaa jopa 26–73% käyttötavasta riippuen. Tuoreen tutkimuksen mukaan puolestaan 4867 ohjelmistokehittäjän kokonaistuottavuus kasvoi tekoälyratkaisujen avulla keskimäärin 26%.
Tekoäly on siis talouden ihmelääke. Vai onko?
MIT:n taloustieteilijä Daron Acemoglu on jarrutellut tekoälyinnostusta. Hän esittää, että todellisuudessa tekoälyratkaisut nostavat kokonaistuottavuutta vain 0.71% seuraavan kymmenen vuoden aikana.
Upworkin tekemässä kyselyssä vastaajista peräti 77% koki puolestaan, että tekoälyn käyttö ei ole suinkaan lisännyt tuotavuutta – vaan vähentänyt sitä. Aikaa kuluu uusien ratkaisujen opetteluun ja niiden virheiden korjailuun. Se, mikä on kuitenkin noussut on työnantajan tuottavuusvaatimus. Nämä löydökset ovat myös linjassa yleisemmin teknologian luvattujen ja toteutuneiden tuottavuusvaatimusten kanssa. Vuosien 2008–2020 aikana kokonaistuottavuus on kasvanut vain 0.5% vuodessa, vaikka samalla aikavälillä on esitelty toinen toistaan hämmästyttäväpiä teknovimpaimia älypuhelimista tabletteihin, pikaviestimistä somemarkkinointiin.
Äkkiseltään näyttääkin siltä, että teknohype on ylimitoitettua.
Todellisuudessa teknologialla voi olla jopa negatiivisia tuottavuusvaikutuksia – niin myös tekoälyllä. Teknologia mahdollistaa oikein käytettynä työn tuloksiin pääsemisen nopeammin kuin ilman teknologiaa. Autolla pääsee Helsingistä Turkuun nopeammin kuin hevoskärryllä ja googlaamalla löytää artikkeliviitteen nopeammin kuin ottamalla bussin kansalliskirjastoon. Teknologia siis nopeuttaa työvaiheita. Tähän liittyy kuitenkin kaksi sudenkuoppaa.
Ensimmäinen näistä on ilmeinen Upworkin kyselyaineiston pohjalta. Valtava enemmistö kokee tekoälyn käyttöönoton tuottavuutta vähentävänä, koska he eivät osaa ainakaan vielä käyttää näitä vimpaimia. Tämä herättää kysymyksen: mitäs sitten ne 23%? Kysely läpivalaiseekin teknologian käyttöön liittyvän ikiaikaisen kysymyksen: nörteillä on aina etulyöntiasema uusien vimpainten käyttöönotossa.
Toisin sanoen, yllä kuvatut tutkimushyödyt on mahdollista saavuttaa opettelemalla käyttämään uusia teknovekottimia oikein. Jos älykännykkä houkuttelee loputtamaan somekierteeseen, sen tuottavuusvaikutus on negatiivinen. Jos se puolestaan palvelee Alexandrian kirjaston virkaa Google Scholareineen ja Arxiv-tietokantoineen, sen positiivinen vaikutus tuottavuuteen – ja ajattelukykyyn – on mittava. Näin on myös tekoälyratkaisujen kanssa. Jos ChatGPT:tä käyttää hakukoneena tai tekstin tuottajana, loppupäivän saakin sitten kammata tuotoksista tekoälyn hallusinointeja. Jos sitä käyttää sen sijaan sparrailussa, ideoinnissa tai tiivistämisessä – uusista läpimurroista kuten Googlen NotebookLM:stä puhumattakaan – aikaa säästyy päivässä tuntikaupalla.
Toinen teknologian sudenkuoppa on, että oikein käytettynä se tehostaa aikaan saatuja tuloksia. Se ei kuitenkaan takaa sitä, että tulokset olisivat tarkoituksenmukaisia. Tuottavuuden mittaaminen perustuu siihen, kuinka monen euron edestä organisaatio tuottaa arvoa per tehty työtunti. Jos työaika höselletään etäpalaverista toiseen, SharePointista oikean tiedoston etsimiseen käytetään tunteja, jatkuva Slack-viestitulva katkaisee keskittymisen kerran viidessä minuutissa ja lopulta viedään markkinoille tuote, jota kukaan ei halua ostaa, on selvää, ettei kokonaistuottavuus näytä kovinkaan imartelevalta.
Teknologia, myös tekoäly, on työkalu.
Oikein käytettynä sen avulla voidaan säästää merkittävästi aikaa työn keskeisten tulosten saavuttamisessa. Tämä edellyttää kuitenkin kolmea asiaa. Ensinnäkin, organisaatioiden täytyy kyetä määrittelemään menestyksen kannalta keskeiset toiminnan tulokset riittävän kirkkaasti ja tarkkarajaisesti. Toiseksi, uudet työkalut pitää valita sen mukaan, mitä oikeasti tarvitaan noihin tuloksiin – ei sen pohjalta, mitä Piilaaksossa hypetetään tai mitä naapurifirma on juuri nyt ottanut käyttöön. Ja kolmanneksi, uusien teknologioiden käyttöönottoon täytyy varata riittävästi aikaa ja resursseja, jotta työaika ei kulu jatkuvaan päänraapimiseen uusien ihmevimpainten kanssa vaan niiden käyttö on sujuva osa omaa arkea.
Nyt tutkimuksissa saavutetut tutkimushyödyt on mahdollista saavuttaa yksilötasolla vaikka heti. Organisaatioissa käyttöön otto edellyttää fiksua pelisilmää ja oikein tehtyjä päätöksiä. Keskeistä on kokeilla rohkeasti uusia työkaluja, jakaa avoimesti kokemuksia etenkin toimialakohtaisesti omassa organisaatiossa ja valita kriittisesti käyttöön ne vekottimet, joista on aidosti hyötyä. Muuten teknologian käytöön ottoon ja soveltamiseen liittyvät sudenkuopat voivat tosiaan jopa johtaa kokonaistuottavuuden laskuun.

