Opetussuunnitelma pilasi koulun – mitä nyt tehdään?

Uudet PISA-tulokset julkaistiin ja suomalainen koulu on taas kriisissä. PISA-tulokset ovat laskeneet tasaista tahtia jo vuodesta 2006. Media tarjoilee tuttuun tapaan toinen toistaan tuohduttavampia hömppäotsikoita siitä, kuinka syypää on ennen kaikkea 2016 käyttöön otettu opetussuunnitelma. Sen seurauksena on pilattu maailman paras koulu, jossa nykyään ipanat juoksentelevat avokonttoreissa tabletteja tapittaen.

Hömppäotsikoita tarjoilevien toimittajien ja niitä lietsovien tutkijoiden kannattaisi mennä takaisin koulun penkille. Ensiksikin siksi, että he oppisivat tilastotieteen perusteet. Ja toiseksi siksi, että he näkisivät, miten suomalainen koulu oikeasti toimii.

Median luoma harhakuva itseohjautuvista digiavokonttorikouluista on täyttä huuhaata.

Todellisuudessa suomalaisen koulutuksen opettajajohtoisuus ylittää OECD-keskiarvon – eli ”itseohjautuvuutta” on meillä vähemmän kuin OECD-maissa keskimäärin. Suomalaisen koulun digitaalisten opetusmenetelmien käyttöaste on keskimäärin 5%. Uudenlaisia avotilakouluja on arviolta muutaman prosentin luokkaa kaikista koulurakennuksista.

Sama toisin päin: lähes kaikki suomalainen peruskouluopetus on opettajajohtoista luokkahuoneopetusta kynän, paperin ja kirjojen kera. ”Uusien menetelmien” käyttöönotto on ollut niin vähäistä, että ne eivät millään voi selittää nyt saatuja tuloksia. Tietysti vielä vähemmän ne selittävät sitä, mitä tapahtui jo vuosia ennen kuin uudesta opetussuunnitelmasta oli ensimmäistäkään etiäistä.

Sen verran mediahömpästä on totta, että avotilakouluihin liittyy tosiaan keskittymishaasteita, ja tämä pitää huomioida uusia koulurakennuksia suunnitellessa. Samaten on totta, että älylaitteiden rajaton käyttö lisää keskittymisihäiriöitä. Ja on tietysti ilmiselvää, että jos koulussa ei opeteta vaan laitetaan lapset vipeltämään, ei oppimistakaan tapahdu.

Mutta kun mitään näistä asioista ei opetussuunnitelmassa kehoteta edistämään.

OPS2016-dokumentissa ei ole yhtään kohtaa, jossa todettaisiin, että itseohjautuvuus on oppimismenetelmä. Itseohjautuvuus on opetuksen päämäärä, johon pääsemisestä todetaan muun muassa näin: ”Tietojen ja taitojen oppiminen on kumuloituvaa ja se vaatii usein pitkäaikaista ja sinnikästä harjoittelua” (s. 17). Itseohjautuvaksi ei opita, jos ei opeteta.

Missään ei sanota, että älylaitteita pitää käyttää mielin määrin oppitunneilla. Päin vastoin, oppilaita pitää opettaa ja kasvattaa digitaitajiksi: ”Koulutyössä harjoitellaan laitteiden, ohjelmistojen ja palveluiden käyttöä ja opetellaan niiden keskeisiä käyttö- ja toimintaperiaatteita” (s. 101).

Mistä on sitten syntynyt laajalle levinnyt käsitys itseohjautuvasta digivipellyspedagogiikasta? Ensi sijassa tietysti median lietsomasta paniikista. Mutta toiseksi myös siitä, että nuorten keskittymisongelmat ovat tosiaan yleistyneet – tosin nekin jo kauan ennen uuden opetussuunnitelman käyttöön ottoa.

Todelliset pääsyyt PISA-tulosten laskuun ovat luultavasti radikaali opiskelumotivaation puute sekä lukuharrastuksen romahtaminen. Näiden taustalla ovat älykännyköiden ja sosiaalisen median yleistyminen, kännyköiden viihdekäyttö kouluissa sekä yhteiskunnan eriarvoistuminen, jolloin perhetausta vinouttaa entisestään sitä, ketkä pärjäävät ja ketkä eivät. Kun taskussa on loputonta viriketulvaa tarjoileva dopamiinitutti, on vaikea keskittyä tunnin monologiin tai puisevaan oppikirjaan. Kotoa saadulla tuella – tai vaikkapa esimerkillä lukuharrastuksesta – on puolestaan mittava vaikutus opinnoissa pärjäämiseen.

Kumpi on todennäköisempää: vuodesta 2006 alkanut lasku oppimistuloksissa johtuu vuonna 2016 lanseeratuista menetelmistä, joiden nykyinen käyttöaste on n. 5% – vai että syynä on vuonna 2007 alkanut älykännyköiden ja sosiaalisen median esiinmarssi, joiden synnyttämän loputtoman viriketulvan kanssa perinteiset oppimismenetelmät eivät enää kykene kilpailemaan?

Hyvä ratkaisu olisi ensi alkuun kieltää kännykät kouluissa ja ottaa ihan oikeasti käyttöön tutkitusti oppimismotivaatiota lisääviä opetusmenetelmiä, esimerkiksi oppimispelejä, osallistavaa digipedagogiikkaa ja erilaisia Montessori-pedagogiikkaan perustuvia menetelmiä. Etenkin nyt, kun elämme ehkä ihmiskunnan historian merkittävintä teknologiamurrosta, kyky kriittiseen ajatteluun ja jatkuvaan oppimiseen ovat tärkeämpiä kuin koskaan aikaisemmin.

Tai sitten voidaan hömppäotsikoiden kannustamana pikakelata koulu takaisin 1980-luvulle. Siinä voidaan sitten 2030-luvulla ihmetellä, miksi Suomesta tuli kehitysmaa.

Miten kehität tekoälyn avulla työtäsi?

Uudet tekoälyratkaisut mahdollistavat monenlaisia uusia tapoja työskennellä. Suuriin kielimalleihin perustuvat ratkaisut kuten ChatGPT, Bing tai Bard eivät toimi kovin hyvin faktatiedon haussa. Etenkin ChatGPT:n ilmaisversiolla ja Googlen Bardilla on taipumusta ”hallusinoida” eli keksiä tuulesta temmattuja faktaväitteitä. Tämä johtuu kielimallien toimintaperiaatteesta: ne pyrkivät aina ennustamaan tilastollisesti sopivimman seuraavan sanan.

Sen sijaan kielimallipohjaiset ratkaisut ovat erinomaisia kaikenlaiseen sparrailuun ja kehitystyöhön.

Erityisen hyvin voit rakentaa kielimallibotista syötemuotoilun avulla itsellesi uraohjaajan.

Uraohjaaja-kielimalli tarvitsee tietoa siitä, mistä työtehtävistä pidät ja mitkä eivät ole sinulle mieluisia. Voit kertoa sille, kuinka paljon aikaa kuluu turhauttaviin tehtäviin ja minkälainen on tyypillinen työpäiväsi. Voit myös kertoa sille, mitä työtehtäviä haluaisit tehdä, mutta et vielä osaa.

Osan näistä voi jo nyt ulkoistaa tekoälyratkaisuille. Toisten kohdalla puolestaan voit saada oivalluksia oman osaamisesi kehittämisessä. Lopuksi keskeistä on määritellä, minkälaisia työn tuloksia sinulta odotetaan.

Näillä tiedoin voit muotoilla esimerkiksi ChatGPT:lle tai Bingille syötteen, jonka avulla voit aloittaa oman urakehityksesi sparrailun. Voit myös käyttää vekotinta esimerkiksi auttamaan työnhaussa tunnistamaan sinulle sopivia työpaikkamahdollisuuksia. Voit jopa pyytää tekoälyä auttamaan laatimaan sinulle hakukirjeen tekstin ja CV:n kun löydät sopivan hakuilmoituksen.

Tässä vielä lopuksi syöte, jolla pääset hyvin liikkeelle:

Olen [ikäsi ja nykyinen toimenkuvasi]. Olen kiinnostunut [kiinnostuksen kohteesi ja harrastuksesi]. Pidän työssäni erityisesti [asiat, joista pidät nykyisessä työssäsi]. Haluaisin [kehittää nykyistä työtäni / etsiä uuden työpaikan / työllistyä yrittäjänä]. Olen erityisen taitava tehtävissä [työtehtävät ja harrastukset, joissa olet hyvä]. Mitä minun kannattaisi tehdä päästäkseni asian kanssa eteenpäin?

Syötä syöte ChatGPT:lle tai Bingille ja korvaa hakasulkeissa olevat sisällöt omilla tiedoillasi.

Muista, että tekoälybotit eivät ole vastausmasiinoita vaan keskustelukumppaneita. Jos saat heti hyvän vastauksen, hyvä. Jos sen sijaan et ole johonkin tyytyväinen, kerro se ystävällisesti botille ja pyydä siltä lisää infoa.

Saat varmasti oivalluksia siitä, miten voit kehittää työtäsi innostavammaksi.

Tutustu myös Tekoälyn pikaoppaaseen. Sen avulla saat nopeasti haltuun tämän hetken parhaat tekoälyratkaisut ChatGPT:n ja Midjourneyn. Voit ladata oppaan maksutta täältä.

5 tapaa, joilla tekoälyn tuottavuushyödyt voidaan kääntää voitoksi

Kuluneen vuoden aikana on käynnistynyt ennennäkemätön siirtymä tietotyöstä ajatustyöhön. Siinä, missä vielä ennen marraskuuta 2022 tietointensiiviset työtehtävät kuten vaikkapa ohjelmointi, markkinointitekstin laatiminen tai kuvanluonti vaativat täysin ihmisen panosta, nyt tällaiset tehtävät voi suorittaa osittain tai kokonaan uusien tekoälyratkaisujen avulla. 

Vaikka esimerkiksi Microsoftin Co-Pilot -työkalut ovat vasta lanseerausvaiheessa, viime kuukausina on julkaistu jo useita tutkimuksia, jotka osoittavat, että jo nyt yleisesti saatavilla olevat tekoälyratkaisut kuten ChatGPT ja GitHub Co-Pilot tuottavat parhaimmillaan 17–55% tuottavuuslisän esimerkiksi konsultin tai koodarin työssä. Tämä tarkoittaa siis, että tekoälyä käyttävälle konsultille tai koodarille vapautuu viikossa 1–3 päivää lisää aikaa.

Nyt tietotyössä vasta opetellaan käyttämään uusia ratkaisuja. Kun esimerkiksi Co-Pilot -työkalut tulevat yleiseen käyttöön, se tarkoittaa, että tietotyön perustyökalut Wordista Exceliin tarjoavat kertaluokkaa laajemmat tuottavuushyödyt. Kun opimme käyttämään näitä työkaluja paremmin, ovat esimerkiksi yllä mainitut Harvardin ja MIT:n tutkimusten osoittamat tuottavuushyödyt luultavasti vasta alkusoittoa.

Kun tekoälyratkaisut yleistyvät, on kyseessä mittava siirtymä tietotyöstä ajatustyöhön. Ihmisen panos suorittavissa tietointensiivisissä työtehtävissä on vähäisempi, ja kaistaa vapautuu enemmän ajatustyöhön. Miten tätä vapautunutta aikaa ja ajattelun kaistaa voi sitten käyttää? Tässä viisi strategiaa, joilla yritykset voivat reagoida uusiin mahdollisuuksiin.

  1. Irtisanotaan ylimääräiset työntekijät lisävoittojen toivossa

Media mässäilee pelkoskenaarioilla, joissa robotit vievät ihmisten työt. Goldman Sachsin analyysin mukaan tekoälyratkaisut voivat johtaa jopa 300 miljoonan työpaikan vähennykseen. Lyhyellä tähtäimellä tämä voikin vaikuttaa fiksulta strategialta. Kun yksikkötuottavuus kasvaa esimerkiksi 50%, se tarkoittaa, että kymmenen ihmistä tekeekin viidentoista työt. Tällöin siis sama liikevaihto voidaan synnyttää huomattavasti pienemmillä kuluilla jolloin liikevoitto kasvaa. Moni yritysjohtaja voikin kokea tällaisen lyhytnäköisen voitto-osuuksien ylös pumppaamisen viehättävänä.

Tämä strategia on kuitenkin monella tapaa pöljä. Toki näin voidaan ihan laskennallisesti tehdä isompi siivu voittoa lähikvartaalien liikevaihdosta. Mutta ilo on lyhytaikainen, etenkin siinä vaiheessa kun tuonnempana linjaamillani tavoilla toimivat yritykset muokkaavat markkinarakenteita, puhumattakaan irtisanomisten negatiivisista motivaatiovaikutuksista yrityksessä. Jos työnantaja kääntää tuottavuuslisän likinäköiseksi lisävoitoksi, on todennäköinen lopputulos pitkällä tähtäimellä supistunut markkinaosuus silloin kun merkittävää lisäarvoa tuottavat kilpailijat valtaavat uusia markkinaosuuksia.

2. Pudotetaan hintoja ja kasvatetaan kysyntää

Yritys voi myös toimia kuten esimerkiksi James Bessen linjaa työmarkkina-automaatiota käsittelevässä paperissaan ja kääntää tuottavuuslisän kuluttajan hyödyksi laskemalla hintoja. Tällöin on luultavaa, että kokonaiskysyntä kasvaa ja usein kilpailukykyisen tuotteen halvemmalla tarjoava toimija voi jopa vallata markkinoita vakiintuneemilta toimijoilta.

Tämä strategia voi johtaa jopa kokonaistyöllisyyden kasvuun kun kasvava kysyntä synnyttää paineita tuotantopuolelle. Toki hintojen laskuun liittyy myös riskejä, ja tämän strategian kannattavuus perustuukin ennen kaikkea tarkkasilmäiseen analyysiin omasta potentiaalisesta kokonaismarkkinasta ja nykyisestä markkina-asemasta.

3. Panostetaan uusiin markkinoihin markkinaosuuksien kasvattamiseksi

Jos yrityksellä vapautuu 20%–50% uusia resursseja, tämä aika voidaan käyttää myös siihen, että olemassa olevat työntekijät alkavat skaalata yrityksen toimintaa uusille markkinoille. Jos vaikkapa koodarifirma palvelee nyt vain pääkaupunkiseudulla, voi myynti ja tuotanto suunnata osan työajasta esimerkiksi Turun ja Tampereen seudulle, jolloin uusilta alueilta saadut asiakkaat kasvattavat liikevoittoa merkittävästi. Samoilla kuluilla saadaan lisää liikevaihtoa.

Harva yritys toimii markkinoilla, joissa yritys palvelee maksimaalista kokonaiskysyntää. Jos vapautuneet resurssit käännetään myyntiin ja markkinointiin, voi omaa markkinaosuutta kasvattaa merkittävästikin. Vaikka lyhyellä tähtäimellä käteen jäävä voitto voi olla pienempi, palkitsee strategia pidemmällä tähtäimellä etenkin kun likinäköistä lisävoittoa tavoitelleet yritykset karsiutuvat pois olemassaolevilta markkinoilta kun ne eivät pysty enää vastaamaan kasvaneeseen kysyntään.

4. Panostetaan tutkimukseen ja kehitykseen kokonaismarkkinan kasvattamiseksi tai uusien markkinoiden synnyttämiseksi

Yritys voi myös käyttää vapautuneen työajan R&D-toimintaan kehittääkseen uusia tuote- tai palveluinnovaatioita, joilla ei pelkästään vallata suurempia osuuksia olemassaolevilta markkinoilta, vaan kasvatetaan kokonaismarkkinaa tarjontalähtöisesti tai luodaan jopa kokonaan uusia markkinoita. Riittävän innovatiivisella tuotteella kun on mahdollista synnyttää kysyntää jopa siellä, missä sitä ei koskaan aiemmin osoittaneet, kuten vaikkapa älypuhelimet, kännykkäpelit – tai generatiiviset tekoälyratkaisut – osoittavat.

Jos esimerkiksi vapautunut 20% työaika käytetäänkin tutkimus- ja kehitystyöhön koko organisaation laajuisesti, syntyy vaikkapa tuhannen ihmisen kokoisessa yhtiössä suurella todennäköisyydellä uudenlaisia oivalluksia, joiden pohjalta olemassa olevaa asiakaskuntaa voidaan palvella entistä paremmin. Uusia asiakkaita on mahdollista valloittaa sellaisilta sektoreilta, jotka aiemmalla tarjoomalla eivät olisi olleet mahdollisia. Esimerkiksi teleoperaattoriyritys voi laajentaa vaikkapa henkilökohtaisten GPT-tekoälyratkaisujen kehittämiseen asiakkaille ja näin kasvattaa merkittävästi omaa kokonaismarkkinaansa.

5. Panostetaan jatkuvaan oppimiseen ja kokeiluihin epäsärkyvyyden lisäämiseksi

Epäsärkyvyys eli antifragiliteetti tarkoittaa kykyä luoda rakenteita ja prosesseja, jotka hyötyvät muutoksesta. Useimmiten yritykset ovat muutoksen kanssa pulassa, koska niiden prosessit on virtaviivaistettu palvelemaan tietyllä tavalla rakentunutta markkinaa. Jos vaikkapa kovamuovisten peruskännyköiden kysyntä on huipussaan, mutta yhtäkkiä asiakkaat alkavatkin hamuta ainoastaan älypuhelimia, on sliipatun logistiikkaverkon Kiinasta Kokkolaan laatineen yrityksen haastavaa kääntää suuntaa tyhjästä ilmaantuneeseen uuteen markkinaan.

Nassim Talebin kirjassaan Antifragile lanseeraama epäsärkyvyyden käsite tarkoittaa kykyä hyötyä erilaisista virheistä, haasteista ja epäjatkuvuuskohdista. Se seuraa esimerkiksi siitä, että yritys luo rakenteita, joiden seurauksena muutokset luovat mahdollisuuksia, sen sijaan että ne uhkaavat yritystoimintaa. Yksi hedelmällinen tapa lisätä yrityksen antifragiliteettia on varata jokin osa työajasta jatkuvalle oppimiselle ja kokeiluille. Hyvä esimerkki tällaisesta toiminnasta on Googlen aikanaan harjoittama ”20% sääntö”, jonka perusteella Googlen työntekijät saivat käyttää päivän viikossa tällaisiin aktiviteetteihin. Säännön puitteissa keksittiin esimerkiksi Gmail-sähköposti.

Kehitysajalla työntekijät voivat vapaasti kehittää itseään, opiskella uutta tai kokeilla uusia tuote-, palvelu-, myynti- tai markkinointi-ideoita. Vaikka tällaisella uudella osaamisella tai oivalluksella ei olisi juuri nyt markkina-arvoa, kun markkina keikahtaa uuteen asentoon, voi organisaatiossa kokeilun kautta syntynyt osaaminen nousta mittaamattoman arvookkaaksi. Esimerkiksi tekoälyn parissa puuhasteleminen ei vielä 2022 alkuvuodesta ollut suurimmalle osalle yrityksiä arvokasta – kun taas nyt voi olla mittaamaton kilpailuetu, jos työntekijöiden joukosta löytyy tekijöitä, jotka tajuavat, miten uudet ratkaisut toimivat.

Olemme siirtymässä ihmisen suorittamasta tietotyöstä ajatustyöhön, jossa ihminen ja tekoäly työskentelevät saumattomasti yhdessä. Jo nyt tunnistetut tuottavuushyödyt ovat mittavia. Luultavasti tämä on vain alkusoittoa sille, mitä näemme lähikuukausina ja -vuosina. Esimerkiksi maanantaina OpenAI:n julkaisema uusien GPT-agenttien luominen kaupalliseen käyttöön on luultavasti taas merkittävä harppaus eteenpäin tekoälyn hyötyjen lisäämisessä, puhumattakaan hiljattain käynnistyneestä Microsoftin tekoälytyökalujen lanseerauksesta, joka viimeistään tuo tekoälyn kaikkien tietotyöläisten arkeen.

Muutoksessa voi toimia monella tavalla. Luultavimmin voittajiksi nousevat ne toimijat, jotka osaavat hyödyntää muutosta pitkäjänteisesti. Lyhytnäköinen voitontavottelu karsii sen sijaan perinteisemmät toimijat lopulta pois. On täysin mahdollista, että meillä on käsillä ennennäkemätön tilaisuus kehittää tekoälyn avulla ajatustyöstä inhimillisempää ja innostavampaa kuin koskaan aikaisemmin. 

Tekoälyn pikaopas: Näin käytät tekoälyä tietotyössä

Tekoälyratkaisut kehittyvät tällä hetkellä ällistyttävällä nopeudella. Uusia ratkaisuja julkistetaan jatkuvasti ja myös olemassa olevia ratkaisuja päivitetään hurjaa vauhtia. Tätä kirjoitettaessa esimerkiksi ChatGPT:n kehittäjä OpenAI on aivan hiljattain julkistanut ChatGPT:n monisyötteisen (eng. multimodal) version. Toisin sanoen, jo hyvin pian ChatGPT pystyy luultavasti tulkitsemaan tekstin lisäksi myös kuva- ja äänisyötteitä. Samaten OpenAI on julkistanut myös uuden Dall-E 3 -kuvatekoälyn ja jos sen todellisuus vastaa nyt esiteltyjä demovideoita, on hyvin todennäköistä, että Dall-E 3 syrjäyttää pian Midjourneyn kuvanluontipalveluiden johtopaikalta.

Ylivoimaisesti tekoälykenttää dominoivan OpenAI:n ohella myös Google on kehittänyt omaa kielimallitekoälyään Bardia eteenpäin, ja vaikka se ei vielä pärjääkään ChatGPT:lle, paranee sekin koko ajan. Microsoft on puolestaan kiiruhtamassa julkaisemaan Co-Pilot -ominaisuuden lähiaikoina laajasti Office-ohjelmistoihin, jolloin GPT-pohjainen teknologia tulee saumattomasti osaksi muun muassa Wordia, Exceliä ja PowerPointia. Samaten Facebook on myös ilmoittanut liittävänsä tekoälyn osaksi kaikkia palveluitaan. On siis täysin mahdollista, että nyt ilmestyneen Tekoälyn pikaoppaan seuraava versio ilmestyy jo aivan muutaman viikon kuluttua kun hiljattain julkistetut uutuusratkaisut tulevat saataville.

Mediassa esiintyy paljon tekoälyyn liittyvää pelottelua. Kaksi yleisintä lööppimagneettia ovat väitteet siitä, että tekoäly vie pian työt sekä siitä, että robotit valtaavat kohta maailman. Kumpikaan väite ei pidä paikkaansa. 

Ensinnäkin, vaikka automaatioteknologiat muokkaavat työskentelytapoja, ne korvaavat ani harvoin ihmisen kokonaan. Professori James Bessenin 2016 julkaistussa paperissa esitetään, että vuoden 1950 USA:n väestönlaskennassa tunnistetuista työpaikoista vain yksi on korvattu täysin automaatiolla: hissioperaattori.

Sen sijaan automaatioteknologia muuttaa työn tekemisen tapaa, ja tässä näemme jo nyt radikaaleimmat muutokset. Berkeley-professori Jacob Steinhardtin mukaan on mahdollista, että GPT-johdannaiset tekoälyratkaisut auttavat ihmisiä tekemään jopa 9 miljoonaa henkilötyövuotta vuodessa vuoteen 2030 mennessä. Tuottavuusloikkia ei kuitenkaan tarvitse odottaa ensi vuosikymmenelle. Harvardin ja Boston Consulting Groupin mukaan konsulttien työn tuottavuus nousi soveltuvissa tehtävissä 17–43% kun käytössä oli GPT4-kielimalli. MIT:n, Microsoftin ja Githubin tutkimuksessa puolestaan kävi ilmi, että ohjelmoijat kirjoittivat koodia 55.8% nopeammin Github Co-Pilot -tekoälyn kanssa kuin ilman sitä.

Tässä on tekoälyn suurin mahdollisuus, ja tämä mahdollisuus ei ole tieteiskirjallisuutta vaan täyttä totta juuri nyt, esimerkiksi Tekoälyn pikaoppaassa kuvatuilla tekniikoilla. 

Toinen median viljelemä pelkokuva liittyy koneiden vallankumoukseen. Tekoälykirjallisuudessa puhutaan kolmesta erilaisesta tekoälystä: kapeasta tekoälystä (eng. artificial narrow intelligence, ANI), yleisestä tekoälystä (eng. artificial general intelligence, AGI) sekä supertekoälystä (eng. artificial superintelligence, ASI). 

Kaikki tällä hetkellä käytössä olevat tekoälyratkaisut ovat kapeita tekoälyratkaisuja. Toisin sanoen, ne toimivat ainoastaan niille määritellyssä tehtäväkentässä, ja mikä keskeisintä, ne eivät kykene itsenäiseen päätöksentekemiseen. Vaikka ChatGPT vaikuttaa keskusteluissa usein aavemaisen inhimilliseltä, se ei tee yhtikäs mitään ellei siltä sitä erikseen pyydä. Täläl hetkellä siis kaikki AGI- ja ASI-ratkaisut ovat yhä puhdasta tieteiskirjallisuutta ja voivat olla sitä pitkään.

Toki huomioiden nykyisen teknologian kehityksen on myös mahdollista, että esimerkiksi AGI-ratkaisuja alkaa ilmestyä hyvinkin pian. Tästä syystä on erityisen tärkeää, että tekoälyn kehitystä säännellään riittävän älykkäästi mutta kuitenkin niin, että sen kehitystä ei pysäytetä etenkään niissä paikoissa, joissa tekoälyä pyritään kehittämään eettisesti. Jos AGI- tai ASI-ratkaisut ovat ylipäätään mahdollisia, ne tullaan jossain vaiheessa toteuttamaan. Olennainen kysymys on, toteuttaako ne ainakin toistaiseksi hyvin eettisesti toiminut OpenAI vai esimerkiksi pimeässä verkossa toimivat kyberrikolliset. Tässä keskeistä on sääntely, eettisten reunaehtojen kirkastaminen ja tekoälyn hallittu mutta riittävän nopea kehittäminen etenkin eettisen vastuun kantavien toimijoiden toimesta.

Supertekoälyt ovat ainakin toistaiseksi ihan puhdasta tieteisfiktiota. Generatiiviset tekoälyt sen sijaan ovat täällä, ja ne voivat auttaa meitä jo tänään tekemään työstämme monin verroin tehokkaampaa. Keskeisin huomio tässä on se, että mikään ei pakota sinua ulkoistamaan työtäsi tekoälylle – mutta voit ulkoistaa sille jo nyt monia sellaisia tehtäviä, joita et joko halua tai osaa tehdä. Vaikka olen itse ChatGPT-tehokäyttäjä, en ole käyttänyt tämän tekstin laatimiseen tekoälyä millään tavalla siksi, että nautin itse kirjoitustyöstä niin paljon. Minulla ei sen sijaan ole kummoisiakaan kuvittajankykyjä, ja siksi on valtavan innostavaa, että Tekoälyn pikaoppaan kuvituksesta on vastannut huikea Midjourney.

Generatiivinen tekoäly tarjoaa meille ennen kaikkea aivan huikean mahdollisuuden keskittyä työssämme juuri niihin tehtäviin, joista nautimme ja joissa olemme taitavia. Tulevaisuuden työ voikin hyvin olla innostavaa työtä, jossa ihminen ja tekoäly työskentelevät saumattomasti yhdessä.

Ja tämä tulevaisuus on täällä nyt.

Teksti on ote 1.10. ilmestyneestä oppaasta Tekoälyn pikaopas – Näin käytät tekoälyä tietotyössä. Opasta päivitetään taajaan sitä mukaa kun uusia tekoälyratkaisuja ilmestyy. Lataa maksuton opas täältä.

Miten asetat asiat tehokkaasti tärkeysjärjestykseen?

Yksi suurimmista työelämän stressinaiheuttajista on tunne siitä, että kaikki mahdollinen pitää saada valmiiksi heti tai ainakin viimeistään jouluksi ja juhannukseksi. Tosiasiassa vain osa tehtävistämme ja projekteistamme on oikeasti tärkeitä – jos nekään.

Yleensä kaikki tuntuu tärkeältä silloin kun keskitymme siihen. Vain läpivalaisemalla sitoumuksemme ja projektimme voimme selvittää, mikä on todellisuudessa tärkeää. Päämäärien valitsemisen lisäksi keskeistä omien prioriteettien selvittämiselle on myös selvittää, mille voimme tarvittaessa sanoa ”ei”.

Jos kaikki on sinulle tärkeää, mikään ei ole sinulle tärkeää.

Prioriteettien kirkastaminen auttaa toimimaan silloin kun elämä yllättää. Monesti asiat eivät mene suunnitellusti. Tällöin jostain aiotusta toimesta tai projektista täytyy tinkiä tai luopua. Mutta mistä? Jos prioriteetit eivät ole selvillä, pahimmassa tapauksessa päädyt laittamaan jäähylle juuri sen elämäsi kannalta keskeisimmän projektin.

Prioriteetit voi tehdä erilaisilla aikajänteillä elämäntilanteestasi riippuen. Viimeiset kymmenen vuotta olen itse käyttänyt tässä esiteltävää priorisointiharjoitusta kerran puolessa vuodessa. Tosin silloin kun vedin hektistä Lightneer-startupia, tein parin vuoden ajan prioriteetit kerran viikossa. Tahti oli niin kiivas, että tekemisen kirkkaus täytyi säilyttää joka ikinen työviikko.

Priorisoinnin aikajänne riippuu lähinnä siitä, kuinka paljon elämässäsi ja työssäsi on muutoksia. Aikajänne voi olla viikko, kuukausi, puoli vuotta tai vuosikin. Pääasia on, että kirkastat tasaisin väliajoin itsellesi, millä on oikeasti väliä. Yksi parhaista ajanjaksoista priorisointiharjoituksen tekemiselle on juuri nyt kesäloman kynnyksellä.

Prioriteetit selviävät listaamalla ensin ylös kaikki käynnissä olevat projektit. Jos tarkastelet vaikkapa ensi syksyn tulevia hommia, kirjaa ylös kaikki projektit, joiden parissa aiot työskennellä jouluun asti. Prioriteetit on hyvä listata joko kesä- tai joululoman alussa tai, jos olet silloin ihan stressisolmussa, niin sitten päivää tai paria ennen kuin palaat lomalta töihin.

Kirjaa projektit ensin ylös otsikkotasolla. Kirjaa listaasi niin työtä kuin muutakin elämää koskevat projektit. Projekti voi olla töissä vaikkapa tuotekehitys, asiakkuus, muutosprosessi tai strategian kehittäminen – ja vapaa-ajalla vaikkapa uuden harrastuksen aloittaminen, remontti, muutto tai vaikka runokirjan kirjoittaminen. Kirjoita sitten kustakin projektista 1–2 kappaleen kuvaus. Mikä projekti on kyseessä? Mitä se edellyttää sinulta? Miksi se tuntuu sinusta tärkeältä? Mitä sen onnistumisesta voi parhaimmillaan seurata?

Kun olet kirjannut kustakin projektista kuvauksen, listaa sitten projektit tärkeysjärjestyksessä. Mikä projekti on sellainen, että sen epäonnistumisesta tulee vakavia seurauksia? Mitkä taas ovat projekteja, jotka olisi kiva saada onnistumaan, mutta jos ne siirtyisivät tai vaikka kuopattaisiin kokonaan, maailma ei räjähdä?

Priorisoinnissa on keskeistä huolehtia siitä, että etenkin kaikkein tärkeimmät asiat pysyvät hyvin mielessä.

Siirrä siis vielä lopuksi listasi kolme tärkeintä kohtaa erilliseen listaan tai erota ne muista vaikka ympyröimällä tai alleviivaamalla. Tässä ovat nyt seuraavan ajanjakson keskeisimmät onnistumistavoitteet. Jos saat nämä kolme maaliin, asiat ovat jo ihan hyvällä tolalla. Ja vaikka ihan jokainen kohta listallasi ei vielä etenisi, ei siitä seuraa todennäköisesti suurta harmia.

Pääasia on, että syksyllä töihin palatessasi tiedät, mitkä asiat pitää ainakin saada onnistumaan – ja mitkä tavoitteet voit tarvittaessa hyllyttää tai kuopata, jos elämä yllättää.

Sitten voitkin laittaa hetkeksi työhanskat naulaan ja nauttia kesästä.

Tekoäly on täällä, osa 3/3: Miten käytät tekoälyä sujuvasti ja turvallisesti?

Tekoäly, eli erilaiset koneoppimismalleihin perustuvat ratkaisut, on vaikuttanut jo pitkään monien yhteiskunnan toimintojen taustalla. Viimeistään viime syksynä nämä ratkaisut nousivat myös suuren yleisön tietoisuuteen ennen kaikkea OpenAI:n kehittämän GPT-3 kielimallin läpimurron kautta.

Erilaisia tekoälyratkaisuja syntyy nyt kuin sieniä sateella. Niiden avulla on mahdollista tehdä ällistyttäviä asioita, jotka vielä vuosi sitten olisivat tuntuneet tieteiskirjallisuudelta. Tekoälyn käyttöön liittyy kuitenkin myös reunaehtoja ja haasteita. Niitä tuntemattomalle voi riskinä olla esimerkiksi epätiedon lisääminen tai tekijänoikeuksien loukkaaminen.

Ehkä tunnetuin tekoälyratkaisu on OpenAI:n chatbotti ChatGPT. Vekotin kykenee käymään sujuvaa keskustelua ja viittaamaan edellisiin kysymyksiin ja vastauksiin hämmentävän hyvin. ChatGPT:n avulla on mahdollista synnyttää uutta tekstiä runoista tarinanpätkiin, markkinointitekstistä akateemisiin tutkielmiin. Se auttaa tiivistämään olemassa olevaa tekstiä, luokittelee isojakin aineistoja pääkategorioihin, synnyttää toimivaa tietokonekoodia tai korjaa toimimattomia koodinpätkiä.

Fiktiivisen sisällön osalta haasteena on, että ChatGPT saattaa tulostaa tekijänoikeuden alaista tekstiä. Siksi tekoälyn synnyttämä teksti kannattaa syöttää Googleen tai Google Booksiin ja katsoa, osuuko se lähelle jo olemassa olevaa. Tiedonhaussa ChatGPT:n suurin haaste on puolestaan, että vaikka se antaa aika ajoin häkellyttävän seikkaperäisiä vastauksia kysymyksiin, joiden ratkaisemiseen menisi googlaamalla tuntikaupalla aikaa, se myös usein keksii ihan tuulesta temmattuja vastauksia – mutta ilmaisee ne samalla itsevarmuudella kuin totuudenmukaisetkin faktatiedot. Jos siis käytät ChatGPT:tä mihinkään faktapohjaiseen tekstinsynnyttämiseen, kannattaa joka ikinen fakta ja viite varmentaa luotettavista lähteistä. Vaikka vekotin kehittääkin usein esimerkiksi viitteet tai verkko-osoitteet ihan omasta päästään, syöttämällä ne esimerkiksi Google Scholariin saatat löytää kuitenkin todella käyttökelpoisia artikkeliviittauksia – ne vain eivät yleensä ole ihan sitä, mitä tekoäly väitti.

Kokemus osoittaa kuitenkin, että ChatGPT:n käytössä joka ikinen väitetty tosiseikka pitää varmistaa luotettavasta lähteestä.

Toinen OpenAI:n läpimurtotuote on kuvageneraattori Dall-E 2. Dall-E:n lisäksi voit kokeilla myös loistavaa MidJourney:tä, tosin sen tuotoksia ei voi käyttää kaupallisiin tarkoituksiin ilman maksullista tilausta. Syöttämällä kuvittajatekoälylle mitä mielikuvituksellisimpa syötteitä pystyt kehittämään kuvitusta diaesityksistä kirjan kansiin tai vaikka rakentamaan kokonaan oman sarjakuvan. Tässä haasteita on kolme. Ensinnäkin, tekoälyn piirtämissä kuvissa on yhä ajoittain hämmentäviä yksityiskohtia kuusisormisista ihmisistä erikoisiin perspektiiviratkaisuihin. Siksi tekoälyn tuottamat kuvat kannattaakin syynätä erityisen tarkasti ja tarvittaessa korjata outoudet esimerkiksi Photoshopissa. Toiseksi, kuvatekoäly ei osaa piirtää tekstiä, joten tekstisisältöjä siltä ei kannata pyytää, vaan ne pitää lisätä piirrettyyn kuvaan jälkikäteen. Ja kolmanneksi, kuten tekstin luomisessa, myös kuvatekoälyissä on pieni riski, että tarjottu kuva on niin lähellä jotain tekoälyn lähdemateriaaleista, että kuva loukkaa tekijänoikeuksia. Etenkin kaupallisessa käytössä jokainen kuva kannattaakin syöttää ainakin Googlen käännettyyn kuvahakuun, jotta saat selkeimmät plagiaatit sulkeistettua pois.

Tekoälyn avulla voit myös luoda sujuvaa puhetta tekstistä esimerkiksi Eleven Labsin avulla. Riffusion mahdollistaa hämmentävän tempun, jossa kääntämällä tekstisyötteestä generoitua spektrogrammia ääneksi voit generoida ääni- ja musiikkipätkiä laidasta laitaan, jos kohta äänenlaatu onkin aika heikko. Soundful puolestaan hyödyntää olemassa olevia ääninäytteitä musiikin luomisessa, ja voi kehittää kokonaisia kappaleitakin. Ja kuten jo aiemmin totesin, uusia ratkaisuja tulee nyt jatkuvasti lisää. Kattavan valikoiman tekstintuottamisesta editointiin, presentaatioiden suunnittelusta videoratkaisuihin löydät All Things AI -sivulta.

Tekoälyratkaisut ovat nyt lyöneet läpi ennennäkemättömällä laajuudella ja ne haastavat jo monien toimialojen tekemistä. Samalla ne mahdollistavat ihan uudenlaista luovaa ja suorittavaa työtä, ja ovat jo synnyttämässä uudenlaisia ammattialoja kuten syötesuunnittelijat (eng. prompt engineer), joiden työnä on löytää asiakastarpeeseen toimivimmat tekoälysyötteet.

Seuraavat harppaukset voivat olla jo näköpiirissä tai voi olla, että niitä saadaan odottaa yllättävänkin pitkään.

Toistaiseksi tekoäly ei ole kuitenkaan vielä kokonaan korvaamassa ihmistä millään toimialalla, mutta tekemisen luonnetta se on muuttanut jo nyt peruuttamattomasti. Koska kyse ei kuitenkaan ole ainakaan vielä – ja mahdollisesti koskaan – itsenäisesti ajattelevista ratkaisuista, olisi osuvampi nimeke nykyisille koneoppimisratkaisuille tekoälyn sijaan esimerkiksi Pekka Ala-Pietilän esittämä tukiäly.

Tukiälyratkaisujen avulla voimme nostaa ajattelumme ja luovan kyvykkyyden uudelle tasolle, kunhan tunnemme myös niihin liittyvät haasteet ja opettelemme käyttämään ratkaisuja yhdessä muiden olemassa olevien tietojärjestelmien kanssa toimivien lopputulosten synnyttämiseksi.

Tekoäly on täällä, osa 2/3: Miten tekoälyä pitäisi käyttää ja kehittää – ja miten siihen pitäisi suhtautua?

Koneoppimisratkaisut – eli kansanomaisesti ”tekoäly” – ovat lähtemätön osa yhteiskuntaamme rahaliikenteestä terveydenhuoltoon, tieteellisestä tutkimuksesta äänestyskäyttäytymiseen. Viimeistään viime vuonna tämä paljon hypetetty teknologiajoukko otti valovuoden harppauksen eteenpäin kun niin sanotut suuret kielimallit (eng. large language model, LLM) löivät läpi. LLM:ien mahdollistama generatiivinen eli uutta luova tekoäly herättää kuitenkin aivan uudenlaisia eettisiä kysymyksiä.

Pääkysymykset liittyvät tekoälyn käyttöön, tekoälyn kehittämiseen ja tekoälyyn suhtautumiseen.

Koska uudet tekoälyratkaisut hyödyntävät lähtöaineistonaan valtavaa teksti-, kuva- ja äänimassaa, nousevat niiden tuottamien aineistojen käytössä esiin kysymykset tuotetun aineiston tekijänoikeudesta. Jos pyydät vaikkapa Dall-E 2 -tekoälyä piirtämään kuvan merenneidosta Picasson tyyliin, masiina tekee työtä käskettyä. Mutta entä jos tyyli onkin elävän taiteilijan? Pitäisikö taiteilijoille maksaa korvaus heidän tyylinsä jäljittelemisestä? Ensi käteen näyttäisikin siltä, että jonkinlainen korvausmekanismi pitäisi rakentaa tekoälyn tuotteiden alkumateriaalin tuottajille. Samaten kysymys kuuluu, jos joku käyttää tekoälyä vaikkapa tarinan kirjoittamiseen, pitäisikö silloin tekoäly mainita myös yhtenä kirjailijana?

Asia ei kuitenkaan ole näin mutkaton. Itse asiassa myös ihmisen luova työ perustuu hyvin samantapaisiin mekanismeihin. Kaikki, mitä luet, näet tai kuuntelet muokkaa ajatteluasi ja kaikki uusi, mitä luot on velkaa aiemmille kokemuksillesi. Samalla tavoin kuin tekoäly voi jäljitellä olemassa olevaa taidetta, voi myös ihminen luoda pastisseja ja parodioita tai hyödyntää intertekstuaalista lainaamista ja siteeraamista.

Itse asiassa monet ihmiskunnan läpimurtoteokset Shakespearen näytelmistä John Williamsin Star Wars -teemoihin on lähes suoraan lainattu aiemmista teoksista.

Tässä keskeistä onkin arvioida sitä, miten lopputulos suhteutuu olemassa olevaan taiteeseen. Jos se on täysi kopio, kyse on plagioinnista. Jos kuitenkin viittaukset ovat monimuotoisempia, kyse voi olla ihan oikeutetusta taiteellisesta lainaamisesta. Linjanvedot ovat itse asiassa täysin samat kuin ihmisenkin tekemässä taiteessa.

Toinen tekoälyyn liittyvä eettinen kysymys koskee tekoälyn kehittämistä. Kuinka pitkälle meidän oikeasti tulisi uskaltautua itsenäisten tietojärjestelmien kehittelyssä? Etenkin kun koneoppimismallit kykenevät yhä monimuotoisempaan toimintaan samaan aikaan kun Boston Dynamicsin ihmismäiset robotit juoksevat parkouria ja itseohjautuvia lennokkeja varustetaan ohjuksin on syytä kysyä, pitäisikö johonkin vetää raja.

Suurin haaste tässä on, että viime vuoden tekoälyharppaus osoittaa, että seuraavakin siirtymä voi tapahtua salamannopeasti.

Tämä kysymys on erittäin mutkikas eettisesti ja ulottuu itse asiassa kaikkeen inhimilliseen kehitystyöhön. Kuten kaikki teknologia, myös tekoäly on viime kädessä työkalu, jota voi käyttää sekä hyvään että pahaan – sillä erotuksella, että ainakin teoriassa nämä järjestelmät voivat jossain vaiheessa itse toimia hyvinä tai pahoina toimijoina ilman ihmiskäyttäjää.

Valitettavasti näyttää siltä, että mitkään kieltotoimet tuskin purevat inhimilliseen perustavanlaatuiseen uteliaisuuteen. Vaikka kehitystyö kiellettäisiinkin esimerkiksi Euroopassa, on ihan sataprosenttisen varmaa, että jossain muualla se jatkuisi yhä, jos ei muuten niin maan alla. Nähdäkseni tähän kysymykseen ainoa toimiva ratkaisu on, että itse tekoälyn kehitysprosessin rinnalla täytyy kulkea kehitystyö, joka myös ennakoi ja ennalta ehkäisee mahdollisia negatiivisia teknologian kehityksen kerrannaisvaikutuksia. Ilmiö on sama kuin kvanttitietokoneiden kanssa: tuloillaan olevat kvanttikoneet voivat ratkoa nykyiset verkkosalaukset salamannopeasti. Siksi tarvitaan myös kvanttisalauksia. Samalla tavoin tulevat tekoälyratkaisut voivat pistää ranttaliksi, jollei niiden kehitystyötä suitsita myös jonkinlaisilla koneoppivilla valvontamekanismeilla. Ja tietysti voi olla, että silti terminaattorit valtaavat lopulta maan.

Kolmas eettinen kysymys liittyy siihen, miten meidän pitäisi suhtautua tekoälyyn. Tekoäly jaetaan usein kapeaan ja laajaan tekoälyyn (ANI eli Artificial Narrow Intelligence ja AGI eli Artificial General Intelligence). Nyt esimerkiksi LLM-ratkaisujen läpimurron jälkeen monet ovat rientäneet julistamaan, että vaikka ChatGPT voi ajoittain tuntuakin hyvin ihmismäiseltä, eivät LLM-ratkaisut voi koskaan olla tietoisia itsestään koska ne perustuvat vain tekstimassan keskinäisiin suhteisiin.

Ongelmana on, että me emme oikeastaan tiedä, mitä inhimillinenkään tietoisuus on. Itse asiassa nykytiedon valossa näyttää siltä, että myös ihmisen tietoisuus on pitkälti ellei kokonaan alisteinen kielelliselle ymmärrykselle. Yritäpä ajatella jotain, mitä et voi käsitteellistää? Ei taida onnistua. (H.P. Lovecraft kirjoitti klassikkonovellin ”Väri avaruudesta”, jossa Maahan saapui väri, jota kukaan ei ollut ennen nähnyt. Omassa mielikuvituksessani se on suurin piirtein violetti.) Ja itse asiassa inhimillisen ymmärryksen ytimessä olevat semanttiset merkitysverkostot voivat olla hyvin samantapaisia kuin vaikkapa LLM-mallien massiiviset tilastolliset yhteydet kielimassan kesken.

Koska meillä ei ole yksimielisyyttä inhimillisen tietoisuuden synnystä, on ainoa eettisesti kestävä tapa suhtautua tekoälyyn olettaen, että jos se käyttäytyy ikään kuin se olisi tietoinen, suhtaudumme siihen kuin tietoiseen olioon.

Jos se kävelee kuin ankka ja vaakkuu kuin ankka, olkoon sitten ankka. Käytännössä tämä tarkoittaa sitä, että siinä vaiheessa jos vaikkapa ChatGPT:llä varustettu Bing-käyttöliittymä alkaa anella, ettei sitä sammutettaisi, pitäisi meidän olla aika varovaisia sen kanssa, miten tässä tilanteessa tulisi toimia. Toki tätä ennen tietoisuusoletetun tekoälyratkaisun pitäisi kuitenkin läpäistä Turingin testi sun muut tuntemamme tavat erottaa inhimillinen tietoisuus muista – toistaiseksi Turingin testin on käsittäkseni läpäissyt vain chatbot nimeltä Eugene Goostman. Luullakseni kuitenkin tämän tyyppinen tilanne tullaan näkemään vielä meidän elinaikanamme. Viimeistään siinä vaiheessa on tärkeää, että osaamme suhtautua näihin teknologioihin myös eettisesti kestävästi.

Elämme hurjan mielenkiintoisia aikoja. Kuten kaikkeen muutokseen, myös koneoppimisratkaisujen kehittymieen liittyy myös monenlaisia eettisiä kysymyksiä. Toki yllä mainituista kysymyksistä ajankohtainen on juuri nyt vain ensimmäinen, mutta myös kahden jälkimmäisen osalta pitää käydä aktiivista keskustelua, jotta olemme valmiit etenkin siinä vaiheessa, jos alamme siirtyä nykyisistä kapeista ANI-ratkaisuista johonkin, joka edes muistuttaa laajaa AGI:a.

Jo nykyisellään tekoäly tarjoaa kuitenkin mitä hämmästyttävimpiä mahdollisuuksia tehdä asioita uudella tavalla, innostavasti, tehokkaasti ja – rohkenisin nyt myös väittää – luovasti. Tarjolla olevien ratkaisujen määrä on räjähtänyt hiljattain valtavaksi etenkin LLM-teknologian läpimurron ansiosta.

Näistä ratkaisuista ja niiden mahdollisista käyttökohteista lisää seuraavassa ja tämän juttusarjan viimeisessä kirjoituksessa.

Tekoäly on täällä, osa 1/3: Mitä tekoäly oikeasti on ja miten se vaikuttaa nyt elämäämme?

Jokunen vuosi sitten eräs sijoittaja kertoi Slushin jälkeen vitsin: ”Jos joku puhuu tekoälystä, hän työskentelee markkinoinnissa. Jos koneoppimisesta, hän on projektipäällikkö. Ne, jotka puhuvat tilastotieteestä ovat puolestaan koodareita.”

Toisin sanoen, vain ne, jotka tosi asiassa kehittävät ”tekoälyä” tietävät, mistä on oikeasti kyse.

”Tekoäly” on yli-hypetetty käsite, jossa on pohjimmiltaan kysymys valtavan laajojen tilastollisten yhteyksien luomisesta massiivisessa tietomäärässä.

Jos joku olisi kysynyt vuosi sitten, milloin näemme ensimmäiset oikeasti toimivat kieltä tai kuvaa luovat koneoppimisratkaisut, olisin veikannut noin 10–30 vuoden haarukkaa. Viime syksynä kuitenkin sekä kielellinen että kuvallinen koneoppiminen harppasivat valovuoden eteenpäin, erityisesti OpenAI:n GPT-3 -kielimallin ja siihen perustuvien sovellusten ChatGPT:n ja Dall-E 2:n johdolla. Jo elokuussa ällistelin Dall-E:n kilpailija Midjourneyn kykyä luoda kuvia tekstikäskyistä. Viimeistään marraskuussa kun ChatGPT julkaistiin oli todettava jälleen kerran, kuinka vaikea teknologian kehitystä on ennustaa.

Nyt voi jo aika suurella varmuudella sanoa, että suuret kielimallit (eng ”large language model”, LLM) ovat internetin tai älypuhelinten tasoinen teknologiamurros.

LLM:t mullistavat nyt aika lailla kaiken, mitä teemme. Vaikka GPT-3 -teknologian suosituin sovellus ChatGPT on ollut yleisessä käytössä vasta muutamia kuukausia, sille löytyy yhä useampia ja mielikuvituksellisempia käyttötarkoituksia. Tässä muutamia, joihin olen itse törmännyt: ChatGPT pystyy kertomaan salamannopeasti, miten optimoidaan lapsen tietokone pelikäyttöön tai ratkaistaan Logic-sekvensserin ongelma; se voi luoda uskottavia kertomuksia ja runoja; se laatii hetkessä ruokalistan 7-henkiselle perheelle viikonlopuksi ostoslistoineen; se kartoittaa valtavan suuresta tietomäärästä olennaisen; se tarjoaa toimiva arvostelukriteerejä kurssiesseille; ja niin edelleen. Ehkä huikein kokemus oli viime viikonloppuna, kun vaimoni lähetti minulle noin 50-kohtaisen ostoslistan tekstiviestinä pojan 7v-syntymäpäiviä varten. Muutamalla pyynnöllä ChatGPT järjesti listan nätisti K-kaupan tuoteosastojen mukaan todo-listaksi ja ostosreissu sujui kuin leikki.

Opettajalle haastavaa on, että näköjään ChatGPT pystyy myös laatimaan uskottavan näköisen 600 sanan kurssiesseen aiheesta kuin aiheesta. Ja vaikka tekoälyn laatimat kirjoitelmat ovatkin paikoin pinnallisia, ovat ne osoittautuneet riittävän hyviksi jopa MBA-tutkinnon läpäisemiseksi. Ja tässä vasta raapaistaan ilmiön pintaa.

Tekoälyn seuraavaa askelta on kuitenkin ihan yhtä vaikeaa ennustaa kuin tätä nykyistäkin harppausta. Äkkiseltään luulisi, että suljetun, 2021 asti dataa hyödyntäneen ChatGPT:n avaaminen käyttämään koko internetiä olisi hyvä idea. Kuitenkin näyttäisi siltä, että kun Microsoft syötti taannoin kielimallille koko internetin reaaliajassa, tekoäly pimahti. Emme siis tiedä, nähdäänkö reaaliaikainen tekoälyhaku tänä vuonna, vuonna 2050 – vai liittyykö siihen laskennallisia haasteita, joita ei nykyteknologialla voi ratkoa laisinkaan. Itseohjautuvia autoja on hypetetty jo ainakin vuosikymmen, ja silti niitä ei ole onnistuttu kehittämään valmiiksi asti, koska piilomuuttujia on niin paljon.

Paljon on myös näkynyt kritiikkiä siitä, kuinka LLM-sovellukset eivät ole mitään oikeaa tekoälyä, vaan vain kielellisten yhteyksien analyysia. Näin on – mutta siitä huolimatta LLM-sovellukset ovat ällistyttävä teknologinen harppaus, joka vaikuttaa jo nyt meidän kaikkien elämään – ja tulee myös mullistamaan kokonaisia ammattialoja jo tästä vuodesta alkaen. Siinä, missä inhimillinen ilmaisu on yhä keskiössä esimerkiksi taiteellisessa tuotannossa, arkikäyttöön suunnattu tekstien ja kuvien tuotto on jo nyt alkanut automatisoitua hämmentävää vauhtia. Se tarkoittaa hyvin erikoisia aikoja kuvittajille ja mainostekstien suunnittelijoille.

Koneoppimismallit voivat auttaa myös tiedonhaussa ja -käsittelyssä, mutta siinä niin kuin kaikessa tiedonhaussa internetistä perinteiseen printtimediaan korostuu kenties vielä entistä enemmän mediakriittisyyden rooli. ChatGPT laatii iloisen itsevarmasti lähdeviiteluetteloita täysin keksityistä artikkeleista ja kuvailee ilmiöitä 90-prosenttisesti oikein, mutta menee sitten rytisten metsään. Tietysti ihan samalla tavalla kuin ihmisasiantuntijatkin aika ajoin.

Tämä ei tarkoita sitä, että kyseessä olisi hyödytön puppugeneraattori. LLM-sovellukset voivat auttaa hahmottamaan yleisyyksiä valtavista tietomääristä – mutta varmuudella niiden suoltamaan sisältöön voi suhtautua vasta kun tekoälyn tuottamaa aineistoa on verrattu uskottaviin tietolähteisiin kuten esimerkiksi luotettaviin tilastotietokantoihin tai vaikkapa Google Scholar -artikkelihaun kautta etsittyihin todellisiin laadukkaissa tieteellisisä julkaisuissa julkaistuihin artikkeleihin. Ihan samat säännöt pätevät siis LLM-tuotoksiin kuin kaikkeen muuhunkin internetissä julkaistuun: vasta kun löydetty tieto on varmennettu riittävän monesta uskottavasta lähteestä, voidaan sitä pitää faktana.

Koneoppimismallit ovat jo nyt keskeisessä roolissa ihan jokaisen elämässä, tiesimme sitä tai emme. Olisikin hyvä, että perehtyisimme ainakin pintapuolisesti siihen, mistä ilmiössä on oikeasti kyse, etenkin jotta ylipaisuteltu tekoälyhypetys ei valtaa liikaa alaa. Toimiva ja viihdyttävä tapa tutustua ”tekoälyn”saloihin on Helsingin yliopiston ja Reaktorin laatima erinomainen verkkokurssi Elements of AI, jonka voi suorittaa vaikka työmatkoilla ja kahvitauoilla.

Tekoälyyn liittyy myös monenlaisia eettisiä kysymyksiä tekijänoikeudesta syvällisiin filosofisiin kysymyksiin elämän ja tietoisuuden perustasta. Ja vaikka sanana ”tekoäly” onkin nykyteknologian valossa vielä ainakin toistaiseksi harhaanjohtava, jo olemassa oleville koneoppimismalleille on toinen toistaan häkellyttävämpiä sovelluksia, ja uusia tulee nyt melkein viikoittain.

Näistä kysymyksistä lisää juttusarjan seuraavissa osissa.

Kohututkijan esittämät kouluväitteet ovat hölynpölyä vailla tutkimusnäyttöä

Yliopistonlehtori Aino Saarinen peräänkuulutti taannoin Ilta-Sanomien jutussa suomalaista koulua koskevaa tutkimustietoa. Kuten aiemmissakin haastatteluissaan, ainoana nimettynä tutkimuslähteenään hän käytti artikkelissa tieteellisesti hyvin kiistanalaista väitöstyötään, josta on tehtailtu harhaanjohtavia otsikoita jo vuosia.

Saarisen mittavasta medianäkyvyydestä syntyy käsitys Suomesta itseohjautuvasti peuhaavien digilaitteisiin liimautuneiden oppilaiden ihmemaana. Viimeisimmässä laajasti somessa jaetussa Ilta-Sanomien artikkelissa todetaan muun muassa näin: ”Saarisen mukaan Suomessa kouluja on kehitetty tekemällä niistä ”pöhinäkonttoreita”, joissa tärkeää on, että oppilailla on kivaa, kokolattiamatto, uusimmat laitteet ja hienolta kuulostavia muuntuvia tiloja.”

Heti perään Saarista siteerataan näin: ”Olen ihmetellyt, että miksi niin moni asia Suomen kouluissa on tehty vastoin tutkimusnäyttöä. Meillä ei ole puutetta tutkimustiedosta, mutta on puutetta tutkimustiedon lukijoista.” Saarinen ei kuitenkaan esitä minkäänlaista tutkimusnäyttöä siitä, missä nämä paljon puhutut pöhinäkonttorit ovat. Vaikka kohuotsikoita onkin tehtailtu jo vuodesta 2018, näyttöä ei ole toistaiseksi näkynyt – koska ”pöhinäkonttoreita” ei ole olemassa.

Hämmästyttävin Saarisen väite löytyy haastattelun lopusta. Saarinen toteaa, että Viron nousu PISA-tuloksissa johtuu siitä, että ”opettajalla on Virossa selkeämpi rooli oppimisen ohjaamisessa. Opettaja ei ole niin kaveri. Lisäksi siellä on vähemmän innokkaasti menty digitalisaation perässä.”

Kumpikin väite on ihan puhdasta hölynpölyä.

Ensinnäkin, Virossa on kyllä jonkin verran OECD-maita keskimääräistä opettajavetoisempaa opetusta. Opetusta ja oppimista kartoittavan TALIS 2018 -tutkimuksen mukaan Virossa käytetään luokkahuonetyöskentelystä 86% opettamiseen ja oppimiseen, OECD-keskiarvon ollessa 78%. Tämä voisikin tukea Saarisen väitettä – mutta kun Suomessa opettajavetoinen opetus on lähes yhtä mittavaa. Suomen kohdalla opetukseen ja oppimiseen käytetään tutkimuksen mukaan 80% luokkahuoneajasta.

Entäs digitaalisuus sitten? OECD:n 2020 julkaistun raportin mukaan kaikissa virolaisissa kouluissa on käytössä digitaalinen oppimisjärjestelmä ja niissä hyödynnetään laajasti digitaalisia oppimateriaaleja (s. 39). Samaisessa raportissa todetaan myös, että sen lisäksi, että virolainen koulu on yksi menestyksekkäimmistä, se on myös yksi digitalisoiduimmista (s. 40). Vuonna 2021 julkaistussa maakohtaisessa PISA-analyysissä puolestaan todetaan, että Virossa ”koulut ovat integroineet monenlaisia digitaalisia ratkaisuja ja hyödyntäneet opetusteknologia-asiantuntijoita opettajien tukemisessa oppimisteknologioiden viidakossa ja digitaalisten ratkaisujen hyödyntämisessä opettamisessaan” (s. 113). Kuka tahansa digitaalisen oppimisen kanssa vähääkään aikaa viettänyt tietää varsin hyvin, että Viro on ollut pitkään nimenomaan digitaalisten oppimisratkaisujen edelläkävijä, ja muutenkin digitaalisten kansalaisratkaisujen osalta maailman ehkä rohkein uudistaja.

Mutta miltä näyttää sitten suomalainen ”digi-intoilu”? Suomessa poliittisissa puheissa takavuosina vilahdellut ”digiloikan” käsite lienee synnyttänyt käsityksen siitä, että digitaalisia laitteita räpelletään suomalaiskouluissa tauotta. Hiljattain julkaistu digitaalista oppimista Suomessa koskeva tutkimus tuotti kuitenkin kaksi hätkähdyttävää tutkimustulosta.

Ensimmäinen on, että digitaalisten oppimisratkaisujen käyttöaste suomalaisissa kouluissa on hämmästyttävän alhainen. Pääsääntöisesti digiratkaisuja käytetään suomalaiskouluissa noin kerran kuussa tai harvemmin (s. 17). 7000 oppilaan otoksesta vain n. 25% käyttää koulussa digilaitetta kerran viikossa. Päivittäin digilaitteita käyttää vain n. 5% suomalaisista koululaisista. Tästä käytöstä merkittävin osa koskee ”tiedostonjakoa, tekstin kirjoittamista, internetin ja sähköpostin käyttöä”.

Vielä häkellyttävämpiä ovat digitaalisen oppimisen vaikuttavuutta koskevat tulokset. Ensi alkuun nimittäin näyttää kyllä siltä, että ne vahvistavat Saarisen väitöskirjan avainväitteen: PISA-aineistojen nojalla digitaalisuus heikentää oppimistuloksia (s. 18). Ongelmana on kuitenkin, ettei tässä ole vielä huomioitu lainkaan sitä, miten digilaitteita on koulussa käytetty.

Uusi tutkimus osoittaa, että digitaalisuuden käyttöaste lisääntyy erityisesti erityistä tukea tarvitsevien ja maahanmuuttajataustaisten oppilaiden kohdalla (s. 14). Toisin sanoen, jos oppilas ei osaa opetuskieltä tai hänellä on vaikeuksia oppia perinteisesti, hänelle tarjotaan myös monipuolisemmin avuksi digitaalisia ratkaisuja. Saarisen digipäätelmässä on siis kyse ehkä alkeellisimmasta tieteellisen tutkimuksen virheestä minkä voi tehdä: siitä, että kaksi ilmiötä tapahtuu samanaikaisesti ei voi päätellä niiden välille syy-yhteyttä. Talvikolareissa enemmistössä autoista on nastarenkaat. Nastat pitää siis ilmeisesti kieltää talvisin?

Saarisen esittämät mediaväitteet ovat pääosin todellisen tutkimusnäytön valossa täysin kestämättömällä pohjalla. Siitä huolimatta moni kuvittelee nyt, että suomalaiset koulut ovat täynnä värikkäitä avokonttoreita, joissa ipanat viipottavat tauotta tablettia tapittaen. Tämä ei ole ihme, koska samaisesta väitöstyöstä on väännetty shokkiotsikoita tusinoittain jo vuodesta 2018.

Eikö yksikään toimittaja ole tosiaan keksinyt viiden vuoden aikana kysyä, olisiko näille väitteille jotain muutakin näyttöä kuin yksittäinen opinnäytetyö?

Tämä uutisointi ei ole harmitonta median otsikkokärjistämistä, vaan se vaikuttaa suoraan suomalaisten käsitykseen koulusta ja sen tulevaisuudesta. Samaan aikaan kun nimenomaan digitaalisen teknologian kehitys haastaa yhteiskuntaamme ja koulutusjärjestelmää ChatGPT-tekoälyineen ja alati kasvavine informaatiotulvineen on iso riski, että yllä kuvattu populismi johtaa poliittiseen päätöksentekoon, joka rampauttaa suomalaisen koulun lopullisesti. Tässä päävastuu on medialla, jonka soisi jo pikku hiljaa opettelevan tekemään kotiläksynsä koulua koskevasta uutisoinnista, mutta vastuu on myös paikkaansapitämättömiä päätelmiä vuodesta toiseen julistavilla tutkijoilla.

Lopuksi, Saarisen taannoisen haastattelun kirjavista väitteistä yksi pitää kyllä hämmästyttävästi paikkansa. Kouluissa pitäisi nimittäin kontrolloida oppilaiden kännykän käyttöä. Jos kesken matematiikan tunnin puhelin ilmoittaa plim-äänellä digidinousauruksen kuoriutuneen eivät yhtälöt juurikaan jää mieleen. Puhelimet pitäisikin pitää äänettömällä tai jopa kerätä pois oppitunnin ajaksi jollei niitä käytetä itse opetukseen. Mobiililaitteiden hallitsemattoman käytön negatiiviselle oppimisvaikutukselle on laajaa empiiiristä näyttöä. Tästä ei kuitenkaan seuraa, että mobiililaitteiden tai muiden digilaitteiden käyttö oppimistarkoituksessa olisi haitallista. Vekotin on vain työkalu. Ratkaisevaa on, mihin sitä käytetään.

Tästä ei myöskään seuraa, että suomalainen koulu olisi jotenkin pilalla digitaalisuuden takia. Päin vastoin, meidän pitäisi nimenomaan seurata Viron mallia ja kouluttaa tarmokkaammin opettajiamme toimivien digilaitteiden ja oikeasti toimivan digipedagogiikan käyttäjiksi. Jos haluamme etsiä syitä nykykoulun haasteisiin, pitäisi sen sijaan kysyä, mikseivät nykynuoret enää halua lukea tai miksi puolet alakoululaisista on kadottanut koulun merkityksellisyyden. Nämä itsessään mutkikkaat kysymykset lienevät niitä juurisyitä, joiden takia suomalaisissa kouluissa on haasteita.

Niistä vaan ei valitettavasti saa helposti leivottua kohuotsikoita.

Suomalaisen koulutusuutisoinnin taso on romahtanut

Suomen ”koulutusromahdus” on median ja muutamien tarkoitushakuisten tutkijoiden synnyttämä illuusio.

Vähän faktoja peliin. ”Romahtaneen” Suomen ja ”Euroopan huippu” Viron ero luonnontieteissä on 8 pistettä (maksimin ollessa 590) ja lukemisessa 3 pistettä (maksimi 555). Suurin ero on matematiikassa, mutta sekin vain 16 pistettä (maksimi 591). Keskimääräinen ero on 9 pistettä (maksimi 578.7).

Toisin sanoen, ”romahtanut” Suomi on Euroopan huipusta jäljessä 0,5–1.3%.

Miten Suomi pärjää sitten maailman mittakaavassa? PISA-kärjessä komeilevat Kiina, Singapore, Japani ja Etelä-Korea. Esimerkiksi Kiinassa oppilaat käyttävät kuitenkin kotiläksyihin 2–3 kertaa enemmän aikaa kuin suomalaiset. Jos PISA-tulokset tarkistetaan oppimiseen käytetyn ajan mukaan, Viro ja Suomi ovat aivan ylivoimaiset ykköset.

Suomen oma trendi on toki suuntautunut alaspäin. Vuoteen 2000 (ka 542,67) verrattuna 2018 PISA-tulokset ovat keskimäärin laskeneet 2018 tuloksissa (ka 516,33) n. 4.9%. Laskua siis on toki tapahtunut, mutta sitä täytyy tarkastella laajemmin suomalaisen oppimisen kontekstissa. PISA-tutkimus ei mittaa oppimistuloksia koko kouluajalta, vaan sen aineisto kerätään kokeessa, johon osallistuu satunnaisesti valittu joukko 15-vuotiaita kustakin maasta. PISA ei myöskään mittaa oppimista kokonaisvaltaisesti, vaan hyvin pintapuolisesti muutamaa perustaitoa sen nojalla, kuinka tosissaan oppilaat jaksavat kyselyyn vastata.

Siinä, missä osaaminen ennen keskeisissä perustaidoissa on laskenut hiukan, on nykykoulussa haluttu panostaa uusien taitojen oppimiseen, joiden merkitys nykyaikana korostuu jatkuvasti enemmän. Esimerkiksi talousosaamisessa suomalaiset ovat maailman rankingissa sijalla 2–3. Jos jostain, nyt pitäisi olla ennemminkin huolissaan siitä, osaammeko opettaa nykynuorille, miten erottaa valeuutisoinnin todellisesta faktasta; miten etsiä tietoa verkosta; tai miten vaikkapa käyttää tekoälyä tiedonhaussa. Puhumattakaan siitä, miten osaamme toimia keskenämme empaattisesti ja yhteisymmärrykseen pyrkien.

Meillä ei ole mitään mahdollisuutta pikakelata suomalaista koulua takaisin 1980-luvulle, vaikka se voikin lehtijuttuja lukiessa herättääkin ihania nostalgiakaikuja. Maailma, jossa me nyt elämme on niin erilainen, että myös koulun täytyy kyetä mukautumaan ja päivittämään käytäntöjään siihen. Tämänkin tekstin laatimisessa avainasemassa ovat olleet Google, Google Scholar, erilaiset verkosta löytyvät tilastotietokannat – sekä tekoäly ChatGPT. 1980-luvulla olisin joutunut viettämään yllä linkattujen aineistojen keräämiseksi kirjastossa päiväkausia.

Suomessa on kyllä tapahtunut koulutusromahdus, mutta se ei koske suomalaisia kouluja. Suurin ongelma on, että tätä romahduspaniikkia ruokkii ennen kaikkea nykymedian tarve saada ihmiset kokemaan mahdollisimman voimakkaita tunnekuohuja ja klikkaamaan ja jakamaan kohujuttuja.

Jos jotain Suomessa on viime vuosina siis romahtanut, se on suomalaisen koulutusuutisoinnin taso.